学无止境
我们为梦想前行!

python 浮点数算法:争议和限制

python浮点数算法:争议和限制,浮点数在计算机中表达为二进制(binary)小数。例如:十进制小数:

0.125

是 1/10 + 2/100 + 5/1000 的值,同样二进制小数:

0.001

是 0/2 + 0/4 + 1/8。这两个数值相同。唯一的实质区别是第一个写为十进制小数记法,第二个是二进制。

遗憾的是,大多数十进制小数不能精确的表达二进制小数。

这个问题更早的时候首先在十进制中发现。考虑小数形式的 1/3,你可以来个十进制的近似值:

0.3

或者更进一步的:

0.33

或者更进一步的:

0.333

诸如此类。如果你写多少位,这个结果永远不是精确的 1/3,但是可以无限接近 1/3。

同样,无论在二进制中写多少位,十进制数 0.1 都不能精确表达为二进制小数。二进制来表达 1/10 是一个无限循环小数:

0.0001100110011001100110011001100110011001100110011...

在任意无限位数值中中止,你可以得到一个近似值。

在一个典型的机器上运行 Python,一共有 53 位的精度来表示一个浮点数,所以当你输入十进制的 0.1 的时候,看到是一个二进制的小数:

0.00011001100110011001100110011001100110011001100110011010

非常接近,但是不完全等于, 1/10.

这是很容易忘记,存储的值是一个近似的原小数,由于浮体的方式,显示在提示符的解释。Python 中只打印一个小数近似的真实机器所存储的二进制近似的十进制值。如果 Python 要打印存储的二进制近似真实的十进制值 0.1,那就要显示:

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

这么多位的数字对大多数人是没有用的,所以 Python 显示一个舍入的值:

>>> 0.1
0.1

认识到这个幻觉的真相很重要:机器不能精确表达 1/10,你可以简单的截断显示真正的机器值。这里还有另一个惊奇之处。例如,下面:

>>> 0.1 + 0.2
0.30000000000000004

需要注意的是这在二进制浮点数是非常自然的:它不是 Python 的 bug,也不是你的代码的 bug。你会看到只要你的硬件支持浮点数算法,所有的语言都会有这个现象(尽管有些语言可能默认或完全不 显示 这个差异)。

还有其它意想不到的。例如,如果你舍入2.675到两位小数,你得到的是:

>>> round(2.675, 2)
2.67

内置 round() 函数的文档说它舍入到最接近的值。因为小数 2.675 正好是 2.67 和 2.68 的中间,你可能期望这里的结果是(二进制近似为) 2.68。但是不是的,因为当十进制字符串 2.675 转换为一个二进制浮点数时,它仍然被替换为一个二进制的近似值,其确切的值是:

2.67499999999999982236431605997495353221893310546875

因为这个近似值稍微接近 2.67 而不是 2.68,所以向下舍入。

如果你的情况需要考虑十进制的中位数是如何被舍入的,你应该考虑使用 decimal 模块。顺便说一下,decimal 模块还提供了很好的方式可以“看到”任何 Python 浮点数的精确值:

>>> from decimal import Decimal
>>> Decimal(2.675)
Decimal('2.67499999999999982236431605997495353221893310546875')

这个问题在于存储 “0.1” 的浮点值已经达到 1/10 的最佳精度了,所以尝试截断它不能改善:它已经尽可能的好了。另一个影响是因为 0.1 不能精确的表达 1/10,对 10 个 0.1 的值求和不能精确的得到 1.0,即:

>>> sum = 0.0
>>> for i in range(10):
...     sum += 0.1
...
>>> sum
0.9999999999999999

浮点数据算法产生了很多诸如此类的怪异现象。在 “表现错误” 一节中,这个 “0.1” 问题详细表达了精度问题。更完整的其它常见的怪异现象请参见 浮点数危害 。 最后我要说,“没有简单的答案”。还是不要过度的敌视浮点数!

Python 浮点数操作的错误来自于浮点数硬件,大多数机器上同类的问题每次计算误差不超过 2**53 分之一。对于大多数任务这已经足够让人满意了。但是你要在心中记住这不是十进制算法,每个浮点数计算可能会带来一个新的精度错误。

问题已经存在了,对于大多数偶发的浮点数错误,你应该比对最终显示结果是否符合你的期待。str() 通常够用了,完全的控制参见 字符串格式化 中 str.format 方法的格式化方式。

赞(0)
转载请注明出处链接:Pycharm » python 浮点数算法:争议和限制

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址